Extensions 1→N→G→Q→1 with N=C22 and Q=C422C2

Direct product G=N×Q with N=C22 and Q=C422C2
dρLabelID
C22×C422C264C2^2xC4^2:2C2128,2170

Semidirect products G=N:Q with N=C22 and Q=C422C2
extensionφ:Q→Aut NdρLabelID
C221(C422C2) = C4243D4φ: C422C2/C42C2 ⊆ Aut C2264C2^2:1(C4^2:2C2)128,1584
C222(C422C2) = C23.380C24φ: C422C2/C22⋊C4C2 ⊆ Aut C2232C2^2:2(C4^2:2C2)128,1212
C223(C422C2) = C24.573C23φ: C422C2/C4⋊C4C2 ⊆ Aut C2264C2^2:3(C4^2:2C2)128,1213

Non-split extensions G=N.Q with N=C22 and Q=C422C2
extensionφ:Q→Aut NdρLabelID
C22.1(C422C2) = C42.428D4φ: C422C2/C42C2 ⊆ Aut C2232C2^2.1(C4^2:2C2)128,669
C22.2(C422C2) = C42.107D4φ: C422C2/C42C2 ⊆ Aut C2232C2^2.2(C4^2:2C2)128,670
C22.3(C422C2) = C23.543C24φ: C422C2/C42C2 ⊆ Aut C2264C2^2.3(C4^2:2C2)128,1375
C22.4(C422C2) = C8⋊C417C4φ: C422C2/C22⋊C4C2 ⊆ Aut C22164C2^2.4(C4^2:2C2)128,573
C22.5(C422C2) = M4(2).3Q8φ: C422C2/C22⋊C4C2 ⊆ Aut C2232C2^2.5(C4^2:2C2)128,654
C22.6(C422C2) = C4.10D43C4φ: C422C2/C22⋊C4C2 ⊆ Aut C2264C2^2.6(C4^2:2C2)128,662
C22.7(C422C2) = C4.D43C4φ: C422C2/C22⋊C4C2 ⊆ Aut C2232C2^2.7(C4^2:2C2)128,663
C22.8(C422C2) = M4(2).12D4φ: C422C2/C22⋊C4C2 ⊆ Aut C2232C2^2.8(C4^2:2C2)128,795
C22.9(C422C2) = M4(2).13D4φ: C422C2/C22⋊C4C2 ⊆ Aut C2264C2^2.9(C4^2:2C2)128,796
C22.10(C422C2) = (C2×C8).D4φ: C422C2/C22⋊C4C2 ⊆ Aut C22168+C2^2.10(C4^2:2C2)128,813
C22.11(C422C2) = (C2×C8).6D4φ: C422C2/C22⋊C4C2 ⊆ Aut C22328-C2^2.11(C4^2:2C2)128,814
C22.12(C422C2) = C42.32Q8φ: C422C2/C22⋊C4C2 ⊆ Aut C22164C2^2.12(C4^2:2C2)128,834
C22.13(C422C2) = C24.4C23φ: C422C2/C22⋊C4C2 ⊆ Aut C22168+C2^2.13(C4^2:2C2)128,836
C22.14(C422C2) = C24.577C23φ: C422C2/C22⋊C4C2 ⊆ Aut C2264C2^2.14(C4^2:2C2)128,1225
C22.15(C422C2) = M4(2).24D4φ: C422C2/C4⋊C4C2 ⊆ Aut C2232C2^2.15(C4^2:2C2)128,661
C22.16(C422C2) = (C2×C8).55D4φ: C422C2/C4⋊C4C2 ⊆ Aut C2264C2^2.16(C4^2:2C2)128,810
C22.17(C422C2) = (C2×C8).165D4φ: C422C2/C4⋊C4C2 ⊆ Aut C2264C2^2.17(C4^2:2C2)128,811
C22.18(C422C2) = C42.9D4φ: C422C2/C4⋊C4C2 ⊆ Aut C22324C2^2.18(C4^2:2C2)128,812
C22.19(C422C2) = C23.410C24φ: C422C2/C4⋊C4C2 ⊆ Aut C2264C2^2.19(C4^2:2C2)128,1242
C22.20(C422C2) = C24.624C23central extension (φ=1)128C2^2.20(C4^2:2C2)128,166
C22.21(C422C2) = C24.626C23central extension (φ=1)128C2^2.21(C4^2:2C2)128,168
C22.22(C422C2) = C232C42central extension (φ=1)64C2^2.22(C4^2:2C2)128,169
C22.23(C422C2) = C24.5Q8central extension (φ=1)64C2^2.23(C4^2:2C2)128,171
C22.24(C422C2) = C24.52D4central extension (φ=1)64C2^2.24(C4^2:2C2)128,172
C22.25(C422C2) = C24.631C23central extension (φ=1)128C2^2.25(C4^2:2C2)128,173
C22.26(C422C2) = C24.632C23central extension (φ=1)128C2^2.26(C4^2:2C2)128,174
C22.27(C422C2) = C24.633C23central extension (φ=1)128C2^2.27(C4^2:2C2)128,175
C22.28(C422C2) = C24.635C23central extension (φ=1)128C2^2.28(C4^2:2C2)128,177
C22.29(C422C2) = C2×C425C4central extension (φ=1)128C2^2.29(C4^2:2C2)128,1014
C22.30(C422C2) = C2×C23.63C23central extension (φ=1)128C2^2.30(C4^2:2C2)128,1020
C22.31(C422C2) = C2×C24.C22central extension (φ=1)64C2^2.31(C4^2:2C2)128,1021
C22.32(C422C2) = C2×C23.Q8central extension (φ=1)64C2^2.32(C4^2:2C2)128,1121
C22.33(C422C2) = C2×C23.11D4central extension (φ=1)64C2^2.33(C4^2:2C2)128,1122
C22.34(C422C2) = C2×C23.83C23central extension (φ=1)128C2^2.34(C4^2:2C2)128,1126
C22.35(C422C2) = C2×C23.84C23central extension (φ=1)128C2^2.35(C4^2:2C2)128,1132

׿
×
𝔽