extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C42⋊2C2) = C42.428D4 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C22 | 32 | | C2^2.1(C4^2:2C2) | 128,669 |
C22.2(C42⋊2C2) = C42.107D4 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C22 | 32 | | C2^2.2(C4^2:2C2) | 128,670 |
C22.3(C42⋊2C2) = C23.543C24 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C22 | 64 | | C2^2.3(C4^2:2C2) | 128,1375 |
C22.4(C42⋊2C2) = C8⋊C4⋊17C4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.4(C4^2:2C2) | 128,573 |
C22.5(C42⋊2C2) = M4(2).3Q8 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.5(C4^2:2C2) | 128,654 |
C22.6(C42⋊2C2) = C4.10D4⋊3C4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.6(C4^2:2C2) | 128,662 |
C22.7(C42⋊2C2) = C4.D4⋊3C4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.7(C4^2:2C2) | 128,663 |
C22.8(C42⋊2C2) = M4(2).12D4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.8(C4^2:2C2) | 128,795 |
C22.9(C42⋊2C2) = M4(2).13D4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.9(C4^2:2C2) | 128,796 |
C22.10(C42⋊2C2) = (C2×C8).D4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.10(C4^2:2C2) | 128,813 |
C22.11(C42⋊2C2) = (C2×C8).6D4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 32 | 8- | C2^2.11(C4^2:2C2) | 128,814 |
C22.12(C42⋊2C2) = C42.32Q8 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.12(C4^2:2C2) | 128,834 |
C22.13(C42⋊2C2) = C24.4C23 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 16 | 8+ | C2^2.13(C4^2:2C2) | 128,836 |
C22.14(C42⋊2C2) = C24.577C23 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.14(C4^2:2C2) | 128,1225 |
C22.15(C42⋊2C2) = M4(2).24D4 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C22 | 32 | | C2^2.15(C4^2:2C2) | 128,661 |
C22.16(C42⋊2C2) = (C2×C8).55D4 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.16(C4^2:2C2) | 128,810 |
C22.17(C42⋊2C2) = (C2×C8).165D4 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.17(C4^2:2C2) | 128,811 |
C22.18(C42⋊2C2) = C42.9D4 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.18(C4^2:2C2) | 128,812 |
C22.19(C42⋊2C2) = C23.410C24 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.19(C4^2:2C2) | 128,1242 |
C22.20(C42⋊2C2) = C24.624C23 | central extension (φ=1) | 128 | | C2^2.20(C4^2:2C2) | 128,166 |
C22.21(C42⋊2C2) = C24.626C23 | central extension (φ=1) | 128 | | C2^2.21(C4^2:2C2) | 128,168 |
C22.22(C42⋊2C2) = C23⋊2C42 | central extension (φ=1) | 64 | | C2^2.22(C4^2:2C2) | 128,169 |
C22.23(C42⋊2C2) = C24.5Q8 | central extension (φ=1) | 64 | | C2^2.23(C4^2:2C2) | 128,171 |
C22.24(C42⋊2C2) = C24.52D4 | central extension (φ=1) | 64 | | C2^2.24(C4^2:2C2) | 128,172 |
C22.25(C42⋊2C2) = C24.631C23 | central extension (φ=1) | 128 | | C2^2.25(C4^2:2C2) | 128,173 |
C22.26(C42⋊2C2) = C24.632C23 | central extension (φ=1) | 128 | | C2^2.26(C4^2:2C2) | 128,174 |
C22.27(C42⋊2C2) = C24.633C23 | central extension (φ=1) | 128 | | C2^2.27(C4^2:2C2) | 128,175 |
C22.28(C42⋊2C2) = C24.635C23 | central extension (φ=1) | 128 | | C2^2.28(C4^2:2C2) | 128,177 |
C22.29(C42⋊2C2) = C2×C42⋊5C4 | central extension (φ=1) | 128 | | C2^2.29(C4^2:2C2) | 128,1014 |
C22.30(C42⋊2C2) = C2×C23.63C23 | central extension (φ=1) | 128 | | C2^2.30(C4^2:2C2) | 128,1020 |
C22.31(C42⋊2C2) = C2×C24.C22 | central extension (φ=1) | 64 | | C2^2.31(C4^2:2C2) | 128,1021 |
C22.32(C42⋊2C2) = C2×C23.Q8 | central extension (φ=1) | 64 | | C2^2.32(C4^2:2C2) | 128,1121 |
C22.33(C42⋊2C2) = C2×C23.11D4 | central extension (φ=1) | 64 | | C2^2.33(C4^2:2C2) | 128,1122 |
C22.34(C42⋊2C2) = C2×C23.83C23 | central extension (φ=1) | 128 | | C2^2.34(C4^2:2C2) | 128,1126 |
C22.35(C42⋊2C2) = C2×C23.84C23 | central extension (φ=1) | 128 | | C2^2.35(C4^2:2C2) | 128,1132 |